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Grand-canonical transition-matrix Monte Carlo and histogram reweighting techniques are used
herein to study the vapor-liquid coexistence properties of two-dimensional (2D) flexible oligomers
with varying chain lengths (m = 1–8). The phase diagrams of the various 2D oligomers follow the
correspondence state (CS) principle, akin to the behavior observed for bulk oligomers. The 2D crit-
ical density is not influenced by the oligomer chain length, which contrasts with the observation for
the bulk oligomers. Line tension, calculated using Binder’s formalism, in the reduced plot is found to
be independent of chain length in contrast to the 3D behavior. The dynamical properties of 2D fluids
are evaluated using molecular dynamics simulations, and the velocity and pressure autocorrelation
functions are investigated using Green-Kubo (GK) relations to yield the diffusion and viscosity. The
viscosity determined from 2D non-equilibrium molecular dynamics simulation is compared with the
viscosity estimated from the GK relations. The GK relations prove to be reliable and efficient for the
calculation of 2D transport properties. Normal diffusive regions are identified in dense oligomeric
fluid systems. The influence of molecular size on the diffusivity and viscosity is found to be dimin-
ished at specific CS points for the 2D oligomers considered herein. In contrast, the viscosity and
diffusion of the 3D bulk fluid, at a reduced temperature and density, are strongly dependent on the
molecular size at the same CS points. Furthermore, the viscosity increases and the diffusion decreases
multifold in the 2D system relative to those in the 3D system, at the CS points. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4747195]

I. INTRODUCTION

With the realization of nanodevices and nanoscale pro-
cesses, evaluation of the properties of materials at lower di-
mensions has become a thrust area of research. Examples of
low-dimensional systems include monolayers on solid sub-
strates; fluids confined between two plates separated by a dis-
tance on the order of the molecular diameter; lipid molecules
at the interface between air and water;1, 2 one-dimensional
systems such as fluids confined to the corner of a rectangular
box;3 and single-file arrangement of water molecules inside a
nanotube.4 The dimensionality of a system greatly influences
the properties of the fluid, as is evident from various system-
atic studies concerning the effect of confinement on the ther-
mophysical properties of fluids.1–10

In order to understand the properties of low-dimensional
systems, as a limiting case of complete confinement, various
2D bulk fluid systems such as square well,11 Yukawa,12, 13 and
Lennard Jones14–16 have been investigated using the theoreti-
cal approach, molecular simulation, density functional theory
(DFT), and perturbation theory. The phase equilibria of 2D
simple Lennard-Jones (LJ) fluids (i.e., monomers) have been
reported in multiple studies.14, 17–22 The shapes of the phase
diagrams obtained from various studies on 2D systems are
not in agreement, particularly for densities at high tempera-
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tures (i.e., near the critical temperature).23 Smith and Frenkel
showed that the critical temperature is very sensitive to the
truncation of the LJ potential.24 Similarly, the line tension
values calculated using the Monte Carlo simulation20 and the
DFT (Ref. 21) are found to be in disagreement. Santra et al.25

demonstrated that a large cutoff is required for the conver-
gence of the result in the case of the 2D system. Thus, a
stronger correlation is present for the 2D system than for the
3D system. Hence, accurate prediction of the physical prop-
erties in 2D systems is more challenging.

In addition to the phase diagram, the dynamical proper-
ties of low-dimensional systems are important from the prac-
tical and fundamental points of view. The diffusivity and vis-
cosity of 3D systems are widely studied properties that have
lately come into focus for confined systems.26–29 Transport
properties in confined systems differ significantly from those
in the bulk, since the hydrodynamics and rheology become in-
creasingly complicated as the spatial dimension decreases.7, 30

For example, polymer melts show very strong structural cor-
relation when the confinement is of the order of the poly-
mer size.2 Overall, confined fluids exhibit high shear viscos-
ity, prolonged relaxation, and nonlinear response at low shear
rates as the confinement increases.31 Thus, autocorrelation
functions (ACFs), which describe the correlation of various
physical properties as the system evolves in time (in two di-
mensions), are of great importance. Velocity autocorrelation
function (VACF) and stress autocorrelation function (SACF)
are two important quantities that are commonly used to under-
stand the dynamical behavior of fluids. ACFs are generally
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calculated using equilibrium molecular dynamics (EMD).32

Integrations of the VACF and SACF, which are also known
as Green-Kubo (GK) relations, provide the self-diffusion co-
efficient and viscosity of the system, respectively. However,
calculation of diffusion and viscosity using ACFs suffers from
the problem of convergence. Hence, non-equilibrium methods
are being widely used for calculating transport properties. For
example, the viscosity of Lennard-Jones chain (LJC) particles
in three dimensions in various states has recently been studied
by Galliero and Bonded26 using non-equilibrium molecular
dynamics (NEMD). Similarly, the self-diffusion coefficients
of 3D LJC fluids at various densities and temperatures have
been obtained by determining the slope of the mean square
displacement (MSD) curves. MSD is advantageous in that it
allows for the detection of diffusive regions, and it is very use-
ful for calculating the self-diffusion coefficient, particularly
when the decay of the VACF is not well understood.

In 1970, Alder and Wainwright reported a long-time
power law decay (t−d/2, where d is the dimension of the sys-
tem) of the VACF in their pioneering work on moderately
dense hard-sphere fluids using MD simulations.33 This power
law leads to a logarithmic divergence of the GK relation in
2D. Until very recently, the use of GK relations to calcu-
late the transport properties in 2D systems was questionable.
However, in a recent study, Isobe showed that the 2D VACF
of a hard-sphere fluid converges in the long time limit for
a moderately dense fluid.34 Isobe demonstrated that when a
large sample population, long correlation time, and more ac-
curate VACF are used, the VACF decays moderately faster
than the earlier reported rate of33 ∼ t−1. On the other hand,
the ACFs of dense systems show oscillatory behavior rather
than algebraic decay at a long time.35 For a dense system,
physical processes such as backscattering may occur, which
can conceal the non-exponential long-time tail. Hence, cap-
turing the important fluctuation and essential decay of the
ACF may involve numerical errors. In a recent study on 3D
LJ fluids, Chen et al.36 demonstrated that by using sufficient
statistics and by proper analysis of the data, one can ob-
tain very accurate values of viscosity, which agree well with
those obtained from non-equilibrium methods. Several other
studies37–39 have also addressed the issues relating to the con-
vergence of the correlation functions. Hong et al.38 suggested
that the integration time needs to be long enough to cap-
ture the essential decay of the ACF, and at the same time,
it should be short enough to avoid the onset of divergence.
However, these studies are based on 3D systems. In the case
of the 2D system, the behavior of ACFs is completely differ-
ent and poorly understood. There are a few reports in which
the convergence of the SACF in 2D Yukawa systems is also
mentioned.40–42 However, detailed investigation of the con-
vergence of fluid particles with attractive forces, particularly
of chain molecules, is not actively pursued.

In this study, we investigate the phase coexistence and
transport properties of 2D oligomers or short-chain molecular
fluids. Oligomers are ubiquitous in nature, typified by poly-
butene, paraffins, and esters. Short, single-stranded nucleic
acids are also considered as oligomers. In the present study, a
comparison between the 2D and 3D liquid-vapor phase tran-
sition and transport properties is also presented. The transport

properties of 3D short-chain fluids are separately calculated
for meaningful comparison. NEMD and EMD studies are also
performed herein for comparison of the transport properties
evaluated using both methods. The effect of system size on
the ACFs and their convergence is also addressed in the cur-
rent study. The rest of this paper is organized as follows. The
model and method are described in Sec. II. In Sec. III, some
details of the simulations are provided, and in Sec. IV, the re-
sults are presented and discussed. Finally, concluding remarks
are presented in Sec. V.

II. MODEL AND METHOD

A well-established model for studying polyatomic flu-
ids is the chain-like-molecular system, wherein spherical seg-
ments are connected. The flexibility of the chain has a signifi-
cant influence on the phase diagram of the system. For exam-
ple, the critical point differs for 3D flexible chain molecules
with different degrees of flexibility.43 The present study con-
siders fully flexible chain molecules in two dimensions. The
model consists of circular beads connected by fixed bonds.
Adjacent beads are separated by a distance of unity. All the
beads interact through truncated and shifted Lennard-Jones
potential of the form:

ULJ(rij ) = 4ε

[(
σ

rij

)12

−
(

σ

rij

)6
]

− 4ε

[(
σ

rc

)12

−
(

σ

rc

)6
]

. (1)

Here, ε and σ are the characteristic energy and length, respec-
tively. All quantities are reduced with respect to ε, σ , and M
(the mass of each bead). The cut-off radius, rc, is taken as 4σ .
Time is reduced as t∗ = t

√
ε

Mσ 2 . The reduced temperature is
given as T* = kBT/ε. In this study, we consider oligomers that
are short polymer chains with m monomers, where m varies
from 1 to 8. The asterisk is hereafter dropped from the sym-
bols for convenience.

The grand-canonical transition-matrix Monte Carlo (GC-
TMMC) technique44, 45 is used herein to evaluate the phase
equilibria of the system. In the GC ensemble, the chemical
potential (μ), temperature (T), and volume (V ) are kept con-
stant, whereas the particle number (N), pressure (P), and en-
ergy (U) fluctuate. At a given coexistence chemical potential,
the macrostate probability distribution shows two peaks cor-
responding to the stable (or metastable) homogeneous phases.
However, the coexistence chemical potential of the system
is not generally known a priori at the specified temperature.
Simulations are performed at an assumed chemical potential,
μ0, which pushes the system to the liquid-like state or vapor-
like state, depending on its value. Histogram reweighting is
utilized to evaluate the chemical potential at which two phases
coexist.46 The multicanonical sampling technique47 is used to
expedite the sampling, which ensures adequate sampling of
all microstates with uniform frequency. The detailed method-
ology is described elsewhere.9, 48

To evaluate the interfacial tension, GC-TMMC in con-
junction with Binder’s finite size scaling analysis49 is
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utilized, as demonstrated in our earlier study.48 The interfa-
cial energy for a finite-size system with a substrate length,
L, is determined from the maximum likelihood in the liquid
phase (�liq

max) and vapor phase (�vap
max), and the minimum like-

lihood in the interface region (�min), as follows:

βFL = 1

2

(
ln �liq

max + ln �vap
max

) − ln �min. (2)

The vapor-liquid interfacial free-energy given by Eq. (3)
is thermodynamically related to the line tension and varies
with the system size according to Binder’s formalism:49

βτL = βFL

2L
= C1

1

L
+ C2

ln (L)

L
+ βτ, (3)

where τ L is the interfacial tension for a system of box length
L, τ is the boundary tension for an infinite system, C1 and C2

are constants, and FL represents the free energy of the vapor-
liquid interface for a finite system of size L. The GC-TMMC
simulation at any given temperature is repeated for at least
three different box lengths (L), and βFL

2L
is determined for each

L. Equation (3) is then used to determine τ at the given tem-
perature, T.

Using the coexistence data generated from the GC-
TMMC simulations, the critical temperature is calculated us-
ing the least-squares fit of the following scaling law:

ρl − ρv = C1

(
1 − T

Tc

)βc

, (4)

where ρ l and ρv are the coexistence liquid and vapor densities
at temperature T, respectively. C1 is a fitting parameter. βc

is fixed at 1/8 which is the 2D critical exponent of the Ising
model. The critical temperature, Tc, estimated from Eq. (4) is
used to calculate the critical density from the least-squares fit
to the law of rectilinear diameter:50

ρl + ρv

2
= ρc + C2 (T − Tc) , (5)

where C2 is also a fitting parameter. Similarly, the critical
pressure is calculated by fitting the following relation:

ln P = A + B

T
, (6)

where A and B are fitting parameters.
Additionally, the fourth-order Binder’s cumulant of the

order parameter along the vapor-liquid coexistence line is cal-
culated for different system sizes to determine the critical
temperature of the oligomers. Binder’s fourth-order cumulant
is defined as51

UL = 1 − 〈M4〉L
〈M2〉2

L

. (7)

Here, M is the appropriate order parameter of the system of
size L. In the present study, M represents the deviation from
the mean density, M = ρ − 〈ρ〉. 〈M4〉 and 〈M2〉 are the en-
semble average of the fourth and second moments of the of
the order parameter, respectively. At the critical temperature,
UL is independent of the system size.52, 53 In this work, to lo-
cate the critical temperatures of oligomers, with m = 2–8, UL

was calculated for L = 20, 25, and 30 at temperatures below

and above the predicted Tc from the scaling law. Intersection
of UL(T) curves for different system sizes represents the criti-
cal temperature of the system.

Another approach to calculate the critical temperature in
the two-dimensional vapor-liquid system is to extrapolate the
line tension curve to the temperature where the value of the
line tension goes to zero. In this work, aforementioned ap-
proach was also used to estimate Tc.

To obtain the transport properties in the liquid states and
supercritical states, as suggested by the phase diagrams, MD
simulation was performed separately in a canonical ensemble
(NVT), where the particle number (N), volume of the system
(V ), and temperature (T) remain unchanged during the simu-
lation. In order to calculate the different thermophysical prop-
erties, all the phase space variables were recorded for a long
time.

The diffusivity was calculated from the VACF and the
MSD curve, which are mathematically equivalent. The VACF
was integrated to obtain the self-diffusion coefficient as

D = 1

d

∫ t=∞

t=0
〈v(t)v(0)〉dt, (8)

where d represents the dimension of the system. This is the
GK relation for diffusion.32 The diffusion coefficient was re-
lated to the slope of the MSD of a particle over time:

D = 1

2d
lim

t−>∞
d

dt
〈[ri(t + t0) − ri(t0)]2〉. (9)

Similarly, the equilibrium viscosity was calculated using
the GK relation for viscosity:

η = V

kBT

∫ t=∞

t=0
〈σxy(t)σxy(0)〉dt, (10)

where the shear stress was calculated using the relation

σxy = 1

V

⎛
⎝ N∑

i=1

Mivxivyi +
N∑

i=1

N∑
j=i+1

dxijfyij

⎞
⎠ . (11)

The terms indicated by v represent the velocity of any
particle; fij is the total force exerted by the ith particle due to
the jth particle, and V is the volume of the system.

In order to calculate the viscosity using NEMD simu-
lation, the SLLOD equation coupled with the Nose-Hoover
thermostat54 was utilized to generate planar shear flow:

.
qi = pi

mi

+ qi.∇u,

ṗi = Fi − pi.∇u − pη

Q
pi,

(12)
.
η = pη

Q
,

ṗη =
N∑

i=1

p2
i

mi

− dNkBT .

Q, the thermostat mass parameter, is written as dNkBT τ 2
c ,

where τ c is a characteristic relaxation time in the system. The
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SLLOD algorithm is well established and has been success-
fully employed to study various systems55–57 away from equi-
librium. In this formalism, the shear viscosity is calculated
from −〈Pxy/

.
γ 〉, where Pxy and

.
γ are the shear pressure and

shear rate, respectively.

III. SIMULATION DETAILS

Phase equilibria study in two dimensions was conducted
using square boxes of edge lengths L = 20,25, 30, 35,40. Sim-
ulations with different system sizes were performed to obtain
the line tension for a given temperature. The statistical error
was calculated on the basis of three independent simulations
using different random number seeds. The phase diagrams re-
ported in this paper are based on L = 40. The 3D phase dia-
gram for the LJC model is taken from Blas et al.58 for com-
parison between the 2D and 3D systems.

The transport properties were obtained by both EMD and
NEMD simulations. EMD and NEMD simulations were per-
formed for 9000 particles using large-scale atomic/molecular
massively parallel simulator (LAMMPS).59 Simulations were
performed in the canonical ensemble (NVT). The equations
of motions were integrated using the velocity-verlet algorithm
by considering the integration time step 
t = 0.001t*. The
initial configurations were equilibrated for a period of 50 000
unit time, followed by a production run of 50 000 unit time.

In the EMD simulation, a square box with a periodic
boundary was used. The temperature was maintained by a
Nose-Hoover thermostat with a relaxation constant of 0.5τ .
The time series data for velocity and shear pressure were
collected during the simulation. Overlapping time segments
starting with different time origins were averaged to calculate
the VACF (〈v(t) · v(0)〉) and SACF (〈σ xy(t) · σ xy(0)〉). The
VACF was averaged over all the particles in the system, and
the MSD was averaged over different time origins and parti-
cles of the system.

The NEMD simulations were conducted using SLLOD
equations [cf. Eq. (12)] for a triclinic box. The SLLOD equa-
tions were implemented using a suitable Lees-Edward peri-
odic boundary condition (PBC) (Ref. 60) that incorporates
the effect of a moving boundary while calculating the im-
age particle. The SLLOD algorithm in conjunction with the
Lee-Edward PBC generates isothermal homogeneous flow in
the x-direction, where the velocity gradient is constant in the
y-direction. Further details of the SLLOD algorithm can be
found elsewhere.57, 61 The simulations were performed for
low shear rates (

.
γ < 0.7). The steady state shear-stress, Pxy,

was calculated using Eq. (10) and was averaged over time.

FIG. 1. Temperature-density vapor-liquid coexistence of 2D oligomeric sys-
tems. The filled symbols represent the critical points. (Inset) Corresponding
state plots of oligomeric systems. Statistical error bars are smaller than the
symbol size.

IV. RESULTS AND DISCUSSION

Figure 1 shows the 2D vapor-liquid phase envelope of
oligomers with different chain lengths. As expected, the phase
envelope shifts to the higher temperature range with increas-
ing chain length. This behavior is well known and has been
observed for chain molecules in various studies.62, 63 At a
particular temperature, the vapor density of a longer chain
is lower than that of a shorter chain, whereas, in the liquid
phase, the density of the longer chain is higher than that of
a shorter chain. The critical temperatures (Tc), critical densi-
ties (ρc), and critical pressure (Pc) were calculated by fitting
of Eqs. (4)–(6), respectively. Table I summarizes the critical
temperatures, densities, and pressures for the chain molecules
of different chain lengths considered herein. In addition to the
scaling law employed in this work, we also locate the criti-
cal temperature where the fourth-order cumulants of different
system sizes intersect, as shown in Fig. 2. Table II presents
the critical temperature data predicated from both the afore-
mentioned methods. It appears that our estimation of critical
temperature by a fit to the scaling law (cf. Eq. (4)) is in good
agreement with that predicted from Binder’s fourth-order cu-
mulant method. We have further extrapolated the line ten-
sion curve to locate the critical temperature where the line
tension goes to zero. Table II also lists the critical tempera-
tures obtained from the line tension data. Table II shows that
the critical temperature calculated from different methods are
in general agreement. Therefore, we conclude that simula-
tion system size considered in this work for the calculation of
the critical temperature is sufficiently large and the predicted

TABLE I. The critical temperature, Tc, density, ρc, and pressure Pc data of 2D oligomers with variable chain
lengths (m). The number in the parentheses represents the error bar in the last digit of the tabled value.

m 2 3 4 5 6 8

Tc 0.630(3) 0.692(1) 0.737(1) 0.765(1) 0.795(2) 0.835(2)
ρc 0.3689(5) 0.3693(4) 0.3679(9) 0.368(1) 0.363(3) 0.355(1)
Pc 0.01384(1) 0.00928(4) 0.00675(3) 0.00501(4) 0.00434(9) 0.00367(2)
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FIG. 2. The fourth-order cumulant, UL of the order parameter, estimated
along vapour-liquid coexistence curve plotted as a function of temperature,
T, for different system sizes, L for oligomers with m = 2 − 8.

critical properties do not associate with the possible system
size effects.

It is well known that the critical temperature increases
as the length of the polymer chain increases, similar to the
behavior observed for the 3D system.58 The critical temper-
ature is substantially suppressed in the 2D case compared to
that in the 3D case, because of the significant reduction in the
coordination number. For example, the critical temperature
of a tetramer in two dimensions is 0.737 (±0.001) and 2.20
(±0.03) (Ref. 58) in three dimensions. However, this is not
the case for the critical density. Our recent work clearly sug-
gests that the critical density can be non-monotonous from 3D
to 2D confinement, irrespective of the molecular nature (sim-
ple or chain fluids).64, 65 The critical density for a 2D system
comprising simple fluids has been observed to be significantly
higher than that of the 3D fluid.9 We observed a similar be-
havior for the flexible chain molecules. For example, the crit-
ical density of tetramer in 3D is 0.265 (±0.005) and 0.367
(±0.009) in 2D. Hence, the critical density in the 2D case is
considerably higher than the 3D value. The critical density of
bulk 3D flexible chain fluids depends on the size of the chain
molecules. In the case of fully flexible bulk (3D) chains, the
phase envelopes of short chains (m = 4 − 8) become wider
with increasing chain length, with a consequent decrease in
the critical density.58 However, in the case of semi-flexible
chains for which bond bending and torsion-angle potential
must be considered, the critical density increases for short
chains (up to eight beads) and decreases for longer chains.63

In contrast, the critical densities of 2D polymeric fluids do
not change significantly with chain length, as shown in Fig. 1.

FIG. 3. Vapor-liquid line tension of 2D oligomeric system with variable
chain length vs. temperature. Statistical error bars are smaller than the symbol
size. (Inset) Plot of line tension versus T/Tc.

The 2D critical pressure decreases with chain length (cf. Ta-
ble I); 3D critical pressure data, to the best of our knowledge,
are not available for comparison. The inset of Fig. 1 presents
the corresponding state (CS) plot of the phase coexistence
of oligomers; the temperatures and densities are reduced by
the respective critical temperature and critical density of the
oligomers in this plot. It is evident from the CS plot that all
the phase diagrams fall onto the single curve, indicating that
the 2D oligomers conform to the CS principles. This behavior
is akin to that observed for the 3D system.58

The finite size interfacial energy obtained from five dif-
ferent system sizes using GC-TMMC simulations were ex-
trapolated to obtain the interfacial energy, and consequently
the line tension for an infinite system size, as per Binder’s
formalism.49 The line tensions of different polymer chains in
a 2D environment are shown in Fig. 3 as a function of temper-
ature. The line tension decreased with increasing temperature,
as expected, which agrees well with the results of a recent
study by Santra and Bagchi25 on the LJ fluid. The inset of Fig.
3 shows the line tension as a function of reduced temperature.
The line tensions of the various oligomers fall on the master
curve, which implied that the line tension is insensitive to the
chain length for the systems considered herein. Blas et al.58

reported that in the case of the 3D system, the surface tensions
of different chain molecules as a function of reduced tempera-
ture fall on a single curve when the chain lengths were greater
than 8 mer units. Thus, the interfacial tension of 3D oligomers
with chain length m < 8, at a reduced temperature, depends
on the size of the oligomers. On the other hand, the interfacial
tension of 2D oligomeric system was found to be independent
of the size the molecules.

TABLE II. The critical temperature, Tc of oligomers calculated from different methods. The number in the
parentheses represents the deviation in the last decimal point.

m 2 3 4 5 6 8

Binder’s cumulant 0.626(1) 0.691(1) 0.734(2) 0.766(2) 0.793(2) 0.834(1)
Extrapolation of the line tension data 0.625(5) 0.688(4) 0.732(6) 0.756(8) 0.781(9) 0.837(7)
Scaling law 0.630(3) 0.692(1) 0.737(1) 0.765(1) 0.795(2) 0.835(2)
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Subsequently, the transport properties of 2D oligomers
were analyzed, and the VACF and SACF were studied in
the liquid and supercritical regions. First, the convergence
of the GK relations in two dimensions was investigated, and
then, the transport coefficients estimated from the GK rela-
tions were compared with those calculated from other meth-
ods. The convergence of the SACF is presented in Subsec-
tion IV A, and the viscosity calculated from the GK relation
is compared with that calculated from the NEMD simula-
tion. The convergence of the VACF is discussed in Subsection
IV B, and a comparison is made with the values calculated
from the MSD. To facilitate effective comparison of the trans-
port properties of different oligomers, the transport properties
were studied at CS points, and for better comparison with the
bulk state, the 3D transport coefficients were also calculated
at these CS points.

ACFs may be influenced by the “artificial” PBC. To pre-
vent such an effect, it is necessary to choose the maximum
correlation time, tmax(∼ (N/ρ)1/3/cs), which is smaller than
the time required for a sound wave to traverse the box. Here,
cs represents the speed of sound, which is calculated as66

cs =
√√√√ 1

M

(
∂P

∂ρ

)
T

+ T

Mρ2
(

∂E
∂T

)
S

(
∂P

∂T

)2

S

, (13)

where E is the energy per particle, P is the system pressure,
and S is the surface of the system. Hence, the box size should
be sufficiently large such that tmax is greater than the maxi-
mum correlation time being studied. In this study, we inves-
tigated the correlation functions up to tmax. In Subsections
IV A and IV B, a case study is presented for ρ = 0.7 and
T = 3.0; the corresponding tmax values for m = 1, 4, and 8 are
8.85, 26.25, and 33.96, respectively.

A. SACF and viscosity

The SACFs were calculated for three chain lengths, viz.,
m = 1, 4, and 8. Figure 4 shows the SACFs at a reduced
density of ρ = 0.7 and a reduced temperature of T = 3.0.
The SACFs exhibited oscillatory behavior at a long time in
all the cases. This behavior became more prominent with in-
creasing chain length, as shown in Fig. 4. Oscillatory behav-
ior at a long time has also been reported for 3D systems in
high-density regions.35 Here, all the simulations were per-
formed at higher densities where oscillatory behavior at a long
time could be observed. The integrated correlation functions
showed plateau regions within tmax. The viscosity was calcu-
lated using Eq. (10), where the SACF was integrated from
t = 0 to t = ∞. However, in all practical cases, time integra-
tion of the SACF showed that after a certain initial time, the
integration remained unchanged for an ensuing period. The
average value of viscosity is generally calculated by averaging
the data points from the plateau region of the time integration
plot (Fig. 4). The fact that the plateau region can be observed
only for a specific time period is in agreement with the obser-
vations made in several other studies.36, 38, 39 The MD simu-
lations performed herein were based on a sufficiently large
system, and the correlation functions were averaged over
10 000 data points. Furthermore, field-driven NEMD simu-

FIG. 4. The SACFs vs. time in reduced unit for m = 1, 4, and 8 are shown
in the top images. The long time behavior is shown at the inset of the top
images. At bottom, the running time integrations [cf. Eq. (9)] of the SACFs
are shown up to the plateau region.

lations were performed for comparison with the viscosity cal-
culated from the GK relation. Figure 5 shows the Newtonian
behavior of the system at low shear rates, where the viscosity
is independent of the shear rate. NEMD studies at low shear
rates (

.
γ < 0.7) did not furnish any evidence of shear thinning.

Given that we are comparing the shear viscosity calculated
from NEMD simulations with that calculated from the EMD
simulation, which essentially represents the case

.
γ = 0.0, we

restrict our discussion to the Newtonian regime. Figure 6
shows the viscosity calculated from EMD and NEMD sim-
ulations; the viscosity from the NEMD simulation is shown
for a shear rate of 0.05. The viscosity data obtained from the
GK relation herein was found to be in good agreement with
that calculated from NEMD simulations.

B. VACF and diffusion

Figure 7 shows the MSD curve at a density of ρ = 0.7 and
temperature of T = 3.0. In the diffusive region, MSD ∼ t1.0

could be clearly observed from the very early stage of the
time series. The running derivative of MSD, shown in the
inset of the figure to verify the more stringent criteria of

FIG. 5. The shear viscosities calculated from NEMD at different shear rates.
Temperature and density are fixed at 0.7 and 3.0, respectively.
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FIG. 6. The viscosities for oligomers calculated from EMD and NEMD at
ρ = 0.7 for different temperatures. Open symbols correspond to NEMD and
closed symbols correspond to EMD.

diffusion, clearly satisfied the condition d
dt

(MSD) ∼ t0.
Hence, by performing MD simulation on a moderately large
system, we confirmed that a normal diffusive regime exists
in dense 2D oligomers. Then, we focused on diffusion co-
efficient calculation using the GK relation; the VACF and
its integration for m = 1, 4, and 8 are presented in Fig. 8.
Clearly, at a long time, the oscillatory behavior was domi-
nant, as was also observed for SACF. The integrated VACFs
were characterized by a plateau region, which could be con-
sidered suitable for the diffusion calculation. This plateau re-
gion occurred well before tmax. The data points within the
plateau region were averaged to calculate the diffusion co-
efficients for all of the systems considered in this study. The
estimated diffusion coefficients were in good agreement with
the values calculated from the MSD time series. The diffu-
sion coefficients estimated from the MSD [cf. Eq. (9)] and
the GK relation [cf. Eq. (8)] at various temperatures using a
reduced density of ρ = 0.7 are shown in Fig. 9 as an exam-
ple. The estimated values were in agreement within the error
limits.

FIG. 7. Mean square displacement (MSD) vs. time for oligomeric systems
at ρ = 0.7 and T = 3.0. Inset shows its time derivative.

FIG. 8. The VACFs vs. time in reduced unit for m = 1, 4, 8 are shown in the
top images. The long time behavior is shown at the inset of the top images.
At bottom, the running time integrations [cf. Eq. (7)] of the VACFs are shown
up to the plateau region.

C. Transport properties at CS points

In this section, we present the transport coefficients at CS
points. In order to understand the effect of chain length for
different dimensions, we also calculate the transport proper-
ties for 3D systems at the selected CS points. Since 2D and
3D both follow the CS principles, CS data point is a conve-
nient state point for comparison. The diffusivities of all of the
oligomers at different state points are shown in Fig. 10(a).
The diffusivity decreased with increasing polymer size in a
nonlinear fashion at all the given temperatures. For a par-
ticular oligomer, the diffusivity increased with temperature,
because of the high kinetic energy. The nonlinear changes
in diffusion with temperature and chain length are reported
for 3D systems also.27 The diffusion coefficients are tabu-
lated in Table III. The diffusion coefficients for chains with
m ≥ 5 did not vary significantly away from the critical tem-
perature. This indicated that the influence of chain length
on diffusion diminished for longer chains at the CS points.
This behavior was observed both in the liquid region and
in the supercritical region. To understand if such a behavior
is exhibited in the bulk state, the diffusion coefficients were

FIG. 9. The diffusion coefficient calculated from VACF [cf. Eq. (7)] and
MSD [cf. Eq. (8)] at different temperatures at ρ = 0.7. Open symbols corre-
spond to VACF and closed symbols correspond to MSD.
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(a)

(b)

FIG. 10. (a) The 2D diffusion coefficient of oligomers vs. reduced temper-
ature. The reduced density ρ/ρc is fixed at 2.25. Error bars are of the order
of symbol sizes. (b) The 3D diffusion coefficient of oligomers vs. reduced
temperature. The reduced density ρ/ρc is fixed at 2.25. Error bars are of the
order of symbol sizes.

TABLE III. The 2D and 3D self-diffusion coefficients at ρ/ρc = 2.25. The
number in the parentheses represents the error bar in the last digit of the
tabled value.

m T/Tc = 0.9 T/Tc = 0.95 T/Tc = 1.5 T/Tc = 2.0

2D
1 0.0357(1) 0.04611(8) 0.0908(2) 0.1134(3)
2 0.02519(6) 0.02787(5) 0.0436(2) 0.0711(4)
3 0.0129(1) 0.0202(2) 0.0348(1) 0.0594(3)
4 0.0153(3) 0.0188(1) 0.0359(3) 0.0489(2)
5 0.01423(9) 0.0153(1) 0.0203(2) 0.0308(2)
6 0.0141(1) 0.0176(2) 0.0227(1) 0.0355(4)
8 0.0141(3) 0.0135(6) 0.0214(4) 0.0315(6)

3D
1 0.1382(4) 0.1447(9) 0.2193(7) 0.2795(7)
4 0.1213(2) 0.1375(3) 0.1806(8) 0.2366(2)
8 0.0986(1) 0.1173(3) 0.1542(5) 0.1648(3)
12 0.0818(3) 0.1029(7) 0.1648(3) 0.1571(5)

TABLE IV. The 2D and 3D shear viscosity coefficients at ρ/ρc = 2.25.
The number in the parentheses represents the error bar in the last digit of the
tabled value.

m T/Tc = 0.9 T/Tc = 0.95 T/Tc = 1.5 T/Tc = 2.0

2D
1 2.88(2) 2.75(1) 2.28(1) 2.21(1)
2 4.7(1) 4.64(9) 3.95(3) 3.74(3)
3 5.25(2) 4.56(3) 4.41(8) 4.73(3)
4 5.71(3) 5.57(3) 5.3(1) 4.64(7)
5 6.87(5) 6.25(8) 5.57(8) 4.52(8)
6 8.7(1) 6.82(7) 5.2(1) 4.4(2)
8 9.2(1) 7.18(4) 5.42(4) 4.44(6)

3D
1 1.32(3) 1.28(5) 1.21(4) 1.17(3)
4 1.5(2) 1.47(2) 1.31(7) 1.35(5)
8 1.65(4) 1.52(8) 1.47(2) 1.48(1)
12 1.73(1) 1.69(3) 1.61(8) 1.54(3)

calculated at the same CS points for the bulk oligomers (3D),
as shown in Table III and Fig. 10(b). The diffusion coefficients
of the bulk fluids were distinctly different for the various chain
lengths at a given CS point, except for m = 8 and 12 at T/Tc

= 2.0. It is plausible that the chain-length independent behav-
ior observed in the 2D case may be observed in the 3D case
as well at higher T/Tc or at longer chain lengths.

Now we turn our attention to the viscosities of 2D and
3D oligomers. For the sake of comparison, we choose a state
point in the corresponding state with ρ/ρc = 2.25 and T/Tc

= 2.0. Figure 11(a) presents the plot of shear viscosity ver-
sus reduced temperature for different chain lengths; the cor-
responding values are tabulated in Table IV. The shear vis-
cosity, as expected, increased with the size of the polymer and
decreased with temperature. Furthermore, in the 2D supercrit-
ical region, the viscosity of long chains, interestingly, did not
differ significantly at the reduced temperatures of T/Tc = 1.5
and T/Tc = 2.0. However, the shear viscosity was influenced
by the chain length in the liquid regions where distinct val-
ues of shear viscosity were observed for each of the chain
lengths. Analogous shear viscosities for the 3D case at the
corresponding reduced temperature and density are listed in
Table IV and plotted in Fig. 11(b). The 3D shear viscosity
was lower than that of the 2D fluid, but the former also var-
ied slightly with chain length at all temperatures. For exam-
ple, the relative changes in viscosity at low dimensions for m
= 4 and 8 at T/Tc = 0.95 were ηm = 4/ηm = 1 = 1.98 ± 0.04
and ηm = 8/ηm = 4 = 1.61 ± 0.07. In contrast, the correspond-
ing changes for the 3D system were ηm = 4/ηm = 1 = 1.13 ±
0.05 and ηm = 8/ηm = 4 = 1.10 ± 0.02 (the suffix represents the
chain length). This difference clearly indicated that the rate of
viscosity increment is higher in 2D systems than in 3D sys-
tems, as the chain length increases.

The insignificant influence of chain length on high-
temperature viscosity and low-temperature diffusion is lim-
ited only to the oligomers or fully flexible short-chain
molecules considered in the present study. It would be of in-
terest to determine whether the longer chain molecules ex-
hibit behavior similar to that observed in this study at a high
density; however, that aspect is not covered in this study. We
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(a)

(b)

FIG. 11. (a) The 2D shear viscosity of oligomers at different reduced tem-
peratures at a reduced density of ρ/ρc = 2.25. Error bars are of the order of
symbol sizes. (b) Bulk shear viscosities of oligomers vs. reduced tempera-
tures at ρ/ρc = 2.25.

plan it to investigate the same in the near future. The ratio
between the different transport coefficients of the 2D and 3D
systems were also calculated at the CS points, as shown in
Table V. When the dimensionality was reduced from three to

TABLE V. The ratio between 2D and 3D transport coefficients of oligomers.
The number in the parentheses represents the error bar in the last digit of the
tabled value.

m T/Tc = 0.9 T/Tc = 0.95 T/Tc = 1.5 T/Tc = 2.0

D3D/D2D

1 3.871(5) 3.138(7) 2.415(5) 2.464(5)
4 7.924(2) 7.313(7) 5.031(1) 4.838(4)
8 6.992(2) 8.682(4) 7.221(2) 5.231(2)

η2D/η3D

1 2.18(3) 2.14(4) 1.88(3) 1.63(3)
4 3.81(1) 3.78(2) 4.04(7) 3.43(5)
8 5.57(3) 4.72(5) 3.68(2) 3.01(2)

two, the viscosity increased and the diffusion decreased mul-
tifold. This change in the transport coefficients was larger for
chain molecules than for monomeric fluids. The magnitude
of the ratio between the 2D and 3D transport coefficients was
also sensitive to the CS points.

V. CONCLUSIONS

The thermodynamics and transport properties of
oligomers in two dimensions were investigated for various
chain lengths (m = 1 − 8). GC-TMMC and histogram
reweighting techniques were used to determine the phase
diagrams of these flexible chain molecules in the 2D sys-
tem. The phase envelope did not broaden with increasing
chain length, contrary to the behavior observed for 3D LJC
fluids. Three different methods, viz., scaling law, Binder’s
fourth-order cumulant approach and extrapolation of the line
tension data, were used to evaluate the critical temperature
of the oligomers. The values obtained from the methods
were in reasonable mutual agreement. Although the critical
temperature increased with increasing chain length, the
critical density remained almost constant. The phase diagram
of short-chain molecules was found to obey the CS principle.
Similarly, the line tension for oligomers with m < = 8 was
found to follow the CS principle in contrast to 3D oligomers.
MD simulations were performed to study the dynamical
system properties. EMD simulation of 2D oligomers in the
liquid and supercritical regions was carried out to calculate
the transport coefficients from the fluctuation of the velocity
and shear ACFs. Normal diffusion was observed in the dense
oligomeric system. GK relations for viscosity and diffusion
in the 2D system were found to converge within a suitable
time period. Convergence, was however, found to be directly
dependent on the chain length. A longer time was required
for the convergence of the SACF for the oligomers, as the
size of the chain molecules increased. Furthermore, NEMD
simulations indicated the existence of a Newtonian regime in
the 2D system at low shear rates. The viscosities calculated
from EMD and NEMD simulations were in agreement with
each other. In the supercritical region, viscosity was not
influenced by the size of the molecules. Similarly, in the
liquid region, diffusion was not influenced by the size of the
oligomers. However, this behavior was not observed for the
3D oligomers. In the case of the 3D system, the diffusion
coefficient and shear viscosity varied with the size of the
molecules at CS points. A sharp increase in the viscosity
and a decrease in the diffusion rate relative to those in the
3D case were also observed for the 2D system. Thus, the
results of the current simulation study should prove useful for
understanding the general behavior of short-chain oils and
biomolecules in a 2D environment.
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